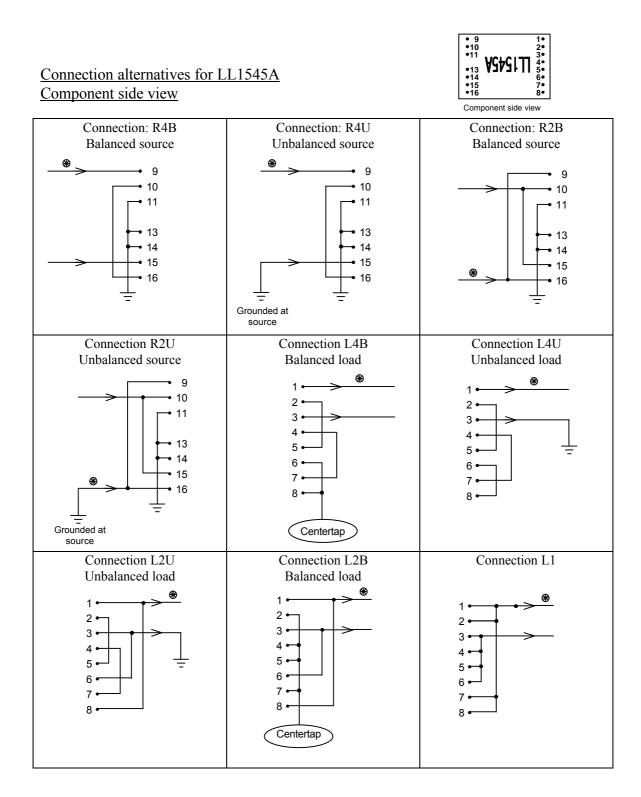


Audio Transformer LL1545A

LL1545A is a general-purpose audio transformer with a variety of connection alternatives. The transformer is built up from two coils, each with a secondary winding surrounded by shields and two primary windings. This structure results in an excellent frequency response. The transformer can be used in many different applications such as a high impedance line input transformer (accepting signal levels of 22 dBU @ 40 Hz with primaries in series), for splitting or as a microphone input transformer.

The LL1545A is made with a mu-metal core and is housed in a mu-metal can.


Refer to page 2 of this sheet for termination alternatives.

Turns ratio: Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from component side) and windings sch	1 + 1 + 1 + 1 : 2 + 2 37 x 22.5 x 14.5 nematics:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$
, 	Can + Core 13
Spacing between pins:Spacing between rows of pins:Weight:Rec. PCB hole diameterStatic resistance of windings:2-3 or 6-71-4 or 5-89-10 or 15-16	2.54 mm (0.1") 22.86 mm (0.9") 46 g 1.5 mm 122 Ω 182 Ω 305 Ω
Self resonance point:	> 220 kHz
Recommended load for best square-wave response (Termination alternative R4B:L4B over): Frequency response (source 600Ω , load (6.7 k Ω + 470 pF) in parallel with 56 k Ω):	6.7 kΩ + 470 pF 10 Hz - 70 kHz +/- 0.5 dB @ 0 dBU
Loss across transformer (at 1 kHz with termination as above Core: Isolation between windings / between windings and shields:	Mu-metal

Data at different termination alternatives, showed on page 2 of this data sheet.

Termination Alternatives	Turns	Copper Resistance	Idle impedance	Suggested Use	THD < 0.2%@40 Hz
	ratio	Prim/sec	@40 Hz, 0dBU		primary level /
					real source impedance
R4B / R4U : L4B / L4U	1:1	$610~\Omega / 610~\Omega$	$80~k\Omega$ / $80~k\Omega$	$10~k\Omega$ / $10~k\Omega$	$22 \text{ dBU} / 600 \Omega$
R2B / R2U : L2B / L2U	1:1	$150~\Omega$ / $150~\Omega$	$20~\mathrm{k}\Omega$ / $20~\mathrm{k}\Omega$	$600~\Omega$ / $600~\Omega$	16 dBU / 150 Ω
R2B / R2U : L4B / L4U	1:2	$150~\Omega$ / $610~\Omega$	$20 \ \mathrm{k}\Omega$ / $80 \ \mathrm{k}\Omega$	$600~\Omega$ / $2.5~k\Omega$	16 dbU / 150 Ω
R4B / R4U : L2B / L2U	2:1	610 Ω / 150 Ω	$80~k\Omega$ / $20~k\Omega$	$10~k\Omega$ / $2.5~k\Omega$	22 dBU / 37.5 Ω
R4B / R4U : L1	4:1	610 Ω / 75 Ω	$80 \ k\Omega \ / \ 5 \ k\Omega$	$10~k\Omega$ / $600~\Omega$	22 dBU / 37.5 Ω

R030220

Turns ratio	Application	Transformer Input (primary)	Transformer Output (secondary)
1:1	Line input to unbalanced circuits	R4B / R4U	L4U
1:2	Line input to unbalanced circuits	R2B / R2U	L4U
2:1	Line input to unbalanced circuits	R4B / R4U	L2U
1:1	Low impedance line input to unbalanced circuits	R2B / R2U	L2U
1:1	Line input to balanced circuits	R4B / R4U	L4B
1:2	Line input to balanced circuits	R2B / R2U	L4B
2:1	Line input to balanced circuits	R4B / R4U	L2B
1:1	Low impedance line input to balanced circuits	R2B / R2U	L2B